
Networks on Chips

404 0740-7475/05/$20.00 © 2005 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

SOC DESIGN in the coming billion-transistor era

implies the extensive use and seamless integration of

numerous semiconductor IP blocks in the form of proces-

sors, embedded memories, and smart interconnects.

Such systems will behave like multiprocessors and will

require a corresponding design methodology for both

their hardware and software implementations. Power and

cross-chip-signaling constraints are driving development

of new design methodologies to incorporate explicit par-

allelism and provide a more structured communication

fabric. Many researchers1,2 have rightfully argued that

arrays of interconnected processors that form the basis of

new multiprocessor SoC platforms (the so-called MP-SoC

platforms) will dominate future designs. Furthermore, to

meet the communication requirements of large SoCs, a

network-on-a-chip (NoC) paradigm is emerging as a new

design methodology. Therefore, system design must

encompass both networking and distributed computa-

tion paradigms and provide underlying communication

infrastructures that allow effective integration of func-

tional and storage blocks.

Many current SoC designs contain numerous proces-

sors for applications such as set-top boxes, wireless base

stations, high-definition TV, mobile handsets, and image

processing.2 Recent literature discusses new trends in

the design of communication architectures in multicore

SoCs.1,3 In particular, researchers suggest building mul-

ticore SoCs around different regular inter-

connect structures originating from

parallel-computing architectures.3 Cus-

tom-built application-specific intercon-

nect architectures are another promising

solution.4 Various trade-offs regarding

latency, throughput, reliability, energy

dissipation, and silicon area requirements

characterize such communication-cen-

tric interconnect fabrics. (See the “Terminology” side-

bar.) An application’s nature will dictate the selection

of a specific template for the communication medium.

Figure 1 shows a representative set of interconnect

templates proposed by different research groups.

Kumar proposed a mesh-based interconnect architec-

ture called Cliché (Figure 1a).5 Grecu et al.6 describe an

interconnect architecture based on the butterfly fat-tree

(BFT) topology for a networked SoC; they also describe

the associated design of the required switches and

addressing mechanisms (Figure 1b). Karim et al.7 pro-

posed the Octagon multiprocessor SoC architecture

(Figure 1c). Octagon is a special case of a more gener-

al class of networks called Spidergon.8 Benini and

Bertozzi4 describe an irregular application-specific NoC

interconnect template (Figure 1d).

A salient feature of NoC architectures is the decoupling

of the communication fabric from the processing and stor-

age elements.1 This lets designers optimize the commu-

nication medium independently of the functionality,

using different levels of abstraction. By viewing a complex

SoC as a micronetwork of multiple blocks, designers can

borrow models and techniques from networking and par-

allel processing and apply them to SoC design methodol-

ogy. (See the “Programming models for NoCs” sidebar on

p. 406.) The micronetwork must ensure energy efficiency

and quality-of-service (QoS) requirements such as relia-

Design, Synthesis, and Test
of Networks on Chips

Editor’s note:
For networks on chips to succeed as the next generation of on-chip
interconnect, researchers must solve the major problems involved in
designing, implementing, verifying, and testing them. This article surveys the
latest NoC architectures, methods, and tools and shows what must happen to
make NoCs part of a viable future.

—Grant Martin, Tensilica

Partha Pratim Pande

Washington State University

Cristian Grecu, André Ivanov, and Resve Saleh

University of British Columbia

Giovanni De Micheli

Ecole Polytechnique Fédérale de Lausanne

bility and guaranteed bandwidth and

latency under the limitation of intrinsically

unreliable signal transmission media. Such

limitations are due to the increased likeli-

hood of timing and data errors resulting

from crosstalk, variability of process para-

meters, and environmental factors such as

electromagnetic interference and soft

errors.1

To become viable, the NoC paradigm

requires support by CAD tools through the

creation of specialized libraries, applica-

tion mapping tools, and synthesis flows.9

Commercial design frameworks (such as

Sonics10) and proprietary design frameworks (such as

STBus2 and Æthereal11) are scarce for NoCs. A few

research design tools address specific problems. Still, the

novelty of NoCs makes it hard to establish a taxonomy or

405September–October 2005

Regardless of their specific implementation, NoC archi-
tectures require evaluation in terms of their throughput,
latency, energy dissipation profiles, silicon area overhead,
and wiring complexity. Throughput is the maximum load
the network can physically handle, and it determines the
system’s aggregate bandwidth. We define transport laten-
cy as the time (in clock cycles) that elapses between a
message injection into the network at the source node and
the end of packet reception at the destination node. In
Figure A, throughput and latency characteristics for a typ-
ical NoC appear as a function of the injection load. When
the injection load approaches the throughput saturation
limit, latency starts to increase exponentially.

When data travels on the interconnection network, both
the interswitch wires and the logic gates in the switches
toggle. This results in energy dissipation and adds
to a SoC’s overall energy budget. When evaluating
the feasibility of these interconnect schemes,
designers must consider the area overhead
required for switch blocks and network interfaces.
Interswitch wires are another source of silicon area
overhead. Depending on their lengths, they might
have to be either pipelined or buffered through
repeater insertion to keep the interswitch delay with-
in one clock cycle.1 Consequently, designers should
consider this additional buffer and register area.

The problem of estimating wire area complexity
involves determining the longest wire segments that
might arise in each architecture and their distribu-
tion. Long wire segments block wiring channels and

force other wires to become longer. In a NoC environment,
the interswitch wire segments are the longest on-chip wires,
except for clock, power, and ground wires. The structured
nature of NoC-based interconnects lets designers predict
the interswitch wire lengths with reasonable accuracy.
Although quantifying the overhead attributable to wiring
complexity might be difficult, analyzing the distribution of
interswitch wire lengths can provide a first-order estimation.

Reference
1. P.P. Pande et al., “Performance Evaluation and Design

Trade-offs for Network-on-Chip Interconnect

Architectures,” IEEE Trans. Computers, vol. 54, no. 8,

Aug. 2005, pp. 1025-1040.

T
hr

ou
gh

pu
t

(f
lit

s/
cy

cl
e/

IP
 b

lo
ck

)

0.8

0.6

0.4

0.2

0

La
te

nc
y

(c
lo

ck
 c

yc
le

s)

600

400

200

0

Injection load (flits/cycle/IP block)

0 0.20 0.35 0.50 0.70 0.90

Throughput
Latency

Figure A. NoC throughput and latency characteristics. We

measure throughput in number of flits/cycle/IP block and

latency in clock cycles.

Terminology

Functional core Switch

(a) (b) (c) (d)

Figure 1. Network-on-a-chip (NoC) interconnect architectures: Cliché (a),

butterfly fat-tree (BFT) topology (b), Octagon MP-SoC (c), irregular

application-specific template (d).

attempt a fair comparison. Therefore, we report on some

existing research projects as case studies.

To validate functionality and performance at various

abstraction levels, ranging from electrical to transaction

levels, designers can port current simulation methods

and tools to networked SoCs. NoC libraries, including

switches, routers, links, and interfaces, give designers

flexible components to complement processor and stor-

age cores. Nevertheless, the usefulness of such libraries

will depend heavily on the maturity of the correspond-

ing synthesis and optimization tools and flows. In other

words, micronetwork synthesis will enable NoC and

SoC design similar to the way logic synthesis made effi-

cient semicustom design possible in the 1980s.

Wide adoption of any new design methodology

depends on its having a complement of efficient test

mechanisms. Developing test infrastructures and tech-

niques to support the NoC design paradigm is chal-

lenging. Specifically, novel DFT schemes and the design

of specialized test access mechanisms (TAMs) for dis-

tributing test vectors are very important.12 Moreover, in

a communication-centric design environment like that

of NoCs, fault tolerance and reliability of the data trans-

mission medium are significant requirements in safety-

critical VLSI applications.

Practical implementation and adoption of the NoC

design paradigm faces multiple unresolved issues relat-

ed to design methodology and technology, test strate-

gies, dedicated CAD tools, and analysis of architectures.

This article discusses these challenges, some proposed

solutions, and future directions worth pursuing.

Design considerations
Although the design process for NoC-based systems

borrows some aspects from the parallel computing

domain, it is driven by a significantly different set of con-

straints. From the performance perspective, high through-

put and low latency are desirable characteristics of

MP-SoC platforms. However, from a VLSI design perspec-

tive, the interconnect architecture’s energy dissipation

profile is critical because it can represent a significant por-

tion of the overall energy budget. Silicon area overhead

resulting from the interconnect fabric is important too.

The common characteristics of these kinds of architec-

tures are that the processor and storage cores communi-

cate with one another through high-performance links

and intelligent switches, and communication design can

be represented at a high abstraction level.

Switch block design
There is a definite trend toward packet-based on-chip

communication. Various schemes for packetized com-

munication are viable and must comply with local and

global QoS requirements. Switching and routing schemes

require switch blocks with various characteristics.11

Recent packet-switching trends show that wormhole

switching is the solution of choice for NoCs.3 This scheme

divides packets into fixed-length flow control units (flits),

with I/O buffers storing only a few flits. Thus, unlike most

other schemes, this design style minimizes the buffer

space in the switches, and the switches used in a worm-

hole technique can be small and compact. A packet’s

first, or header, flit contains routing information. Header

flit decoding enables switches to establish the path, and

subsequent flits simply follow this path in a pipelined

fashion. As a result, each incoming data flit of a message

Networks on Chips

406 IEEE Design & Test of Computers

Programming models for NoCs
The range of functional IP blocks extends from application-

specific processors, to general-purpose RISCs, to I/O and
memory blocks, and all must comply with a common program-
ming platform. A programming model for parallel systems like
NoCs is a description of the basic components, their properties
and available operations, and their synchronization.1 The two
primary parallel computing models are the parallel random-
access machine and the message-passing model. The ST
Microelectronics MultiFlex multiprocessor SoC programming
environment focuses on both these models. It includes a dis-
tributed-system object component message-passing model
and a symmetrical multiprocessing model using shared mem-
ory. Developed specifically for multiprocessor SoCs, the
MultiFlex environment maps these models onto the StepNP plat-
form.1 Van der Wolf et al. describe a task transaction-level (TTL)
interface, which application developers can use for developing
parallel application models by integrating hardware and soft-
ware tasks on a platform.2 Because it is an abstract interface, it
permits the use of the TTL interface easily without knowledge
of low-level implementation details, and it allows implementa-
tion of a broad range of multiprocessor platforms.

References
1. P. Magarshack and P.G. Paulin, “System-on-Chip beyond the

Nanometer Wall,” Proc. 40th Design Automation Conf. (DAC

03), ACM Press, 2003, pp. 419-424.

2. P. van der Wolf et al., “Design and Programming of Embedded

Multiprocessors: An Interface-Centric Approach,” Proc. Int’l

Conf. Hardware/Software Codesign and System Synthesis

(CODES + ISSS 04), ACM Press, 2004, pp. 206-217.

packet is simply forwarded along the same output chan-

nel as the preceding data flit, and packets needn’t be

reordered at their destinations. If a flit faces a busy chan-

nel, subsequent flits must wait at their current locations.

One drawback of this simple wormhole switching

method is that distinct messages cannot be interleaved

or multiplexed over a physical channel. Messages must

cross a channel in their entirety before another message

can use it. This decreases channel utilization if a flit

from a given packet is blocked in a buffer. However,

introducing virtual channels in the I/O ports can

improve channel utilization considerably. If a packet’s

flit is blocked in one virtual channel, then flits of alter-

nate packets can use the other virtual channel buffers

and, ultimately, the physical channel.

Switch design also depends on the routing scheme

adopted. The two broad categories of routing are deter-

ministic and adaptive. Deterministic routing algorithms

always provide the same path between a given source

and destination pair. Adaptive routing algorithms use

information about routing traffic or channel status to

avoid the congested or faulty part of the network. In a

deterministic routing scheme, switches can be fast and

compact. Figure 2 shows a schematic representation of

a switch consisting mainly of input/output FIFO buffers

and a routing block.

High throughput requires multiple (two in this exam-

ple) virtual channels. Fast, streamlined switches can also

support simple adaptive routing schemes. For example,

in the Nostrum NoC, the switches realize a congestion-dri-

ven deflective routing scheme for a mesh or torus network

architecture. Ye et al. combined this routing scheme with

wormhole switching.13 The switches are combinational

blocks, and the decision to deflect a packet that cannot

be routed efficiently toward its destination is based on the

analysis of traffic congestion at the neighboring nodes.

Performance evaluation and design trade-offs
NoC-based interconnect performance correlates

strongly with the topology selected for implementation.

These topologies fall broadly into two categories: regular

architectures (Figures 1a, 1b, and 1c) and irregular, appli-

cation-specific (custom) NoC structures (Figure 1d). In

regular architectures, the performance level is homoge-

neous across the whole system. In irregular architectures,

the service requirements vary widely for the different

processors and storage blocks. In the case of custom-built

NoC architectures, switch blocks might not be identical;

their design and placement depend on the specific com-

munication requirements. Regular network architectures

are well suited for the real-

ization of multiprocessor

communication schemes.

Irregular network architec-

tures might be necessary

for realizing application-

specific SoCs, such as

those in mobile-phone sys-

tems, where different het-

erogeneous blocks with

varying communication

requirements must be

linked.

Communication
pipelining

The exchange of data among the processors and

storage cores is becoming an increasingly difficult task

because of growing system size and nonscalable global

wire delay. To cope with these issues, designers must

divide the end-to-end communication medium into

multiple pipelined stages, with the delay in each stage

comparable to the clock-cycle budget. In NoC archi-

tectures, the interswitch wire segments, along with the

switch blocks, constitute a highly pipelined communi-

cation medium characterized by link pipelining, deeply

pipelined switches, and latency-insensitive component

design.4 Link pipelining is inherently built into regular

NoC topologies. Custom-built architectures require spe-

cial measures to achieve link pipelining. The switches

generally consist of multiple pipeline stages. The num-

ber of intraswitch pipeline stages can vary with the

design style and the features incorporated within the

switch blocks. However, through careful circuit-level

design and analysis, designers can make each

intraswitch stage’s delay less than the target clock peri-

od in a particular technology node.6

Traffic pattern and network analysis
Evaluating the performance of NoC-based intercon-

nects through system-level simulation requires using

specific traffic patterns characterizing the data flow

through the system. Designers traditionally use a

Poisson-distributed injection rate when characterizing

the performance of multiprocessor platforms. However,

self-similar distribution is a better match for real-world

SoC scenarios. Designers can model self-similar traffic

by aggregating many on/off message sources. The

Pareto distribution F(x) = 1 – x−α, with 1 < α< 2, fits well

with this situation. For example, researchers have

407September–October 2005

FIFO FIFO

F
IF

O
F

IF
O

Routing
logic
block

Figure 2. Switch architecture for

deterministic and adaptive routing

schemes.

observed self-similar traffic in the bursty traffic between

on-chip modules in typical MPEG-2 video and network-

ing applications.

Most researchers accept the assumption of uniform

spatial distribution of traffic patterns for evaluating par-

allel systems. However, this is not very realistic in a SoC

environment because different functions will be

mapped to different parts of the SoC, and the traffic will

exhibit highly localized patterns. Consider an illustra-

tion of spatial localization in a mesh-based NoC (Figure

1a): One possibility is to constrain local traffic within

the four destinations placed at the shortest Manhattan

distance, while the rest of the traffic is uniformly dis-

tributed among the other destinations. For example, a

localization factor of 0.3 signifies that 30% of the traffic

generated by a core is local. As a result of this traffic

localization, a system’s throughput—and hence its

aggregate bandwidth—can be enhanced considerably,

making it possible to transfer more data without satu-

rating the network. Increasing the amount of traffic

localization causes more messages to be injected with-

out increasing the average energy dissipation. This hap-

pens because, on average, messages traverse fewer

hops when there is greater localization. Consequently,

designers should perform functional mapping to exploit

the advantages of spatial locality, placing the blocks that

communicate more frequently closer together. This

reduces the use of long global paths and the accompa-

nying energy dissipation.

Designers can analyze NoC performance at various

levels of abstraction. Whereas general-purpose network

simulators such as ns2 (http://www.isi.edu/nsnam/ns/)

can achieve network simulation, abstractions that can

incorporate the network as well as models for the pro-

cessing and storage cores can provide more useful infor-

mation. The modeling language SystemC can serve to

effectively model switches and network interfaces at the

transaction or cycle-accurate level. It’s possible to com-

bine such models with instruction-level, bus-level, or

detailed models of the processing cores. One advantage

of using SystemC is the possibility of linking software

programs that can implement one or more layers of the

communication protocol. The On-Chip Communication

Network (OCCN) project8 proposes an efficient, open-

source research and development framework for the

specification, modeling, and simulation of on-chip com-

munication architectures. OCCN defines a universal API

and an object-oriented C++ library built atop SystemC.

Network emulation by FPGAs is another way to validate

specific switch and network-interface implementations.

Because emulation can execute two to three orders of

magnitude more quickly than cycle-accurate simula-

tion, designers can experiment with different library

components and expose the components to workloads

of significant length.

NoC synthesis
Synthesizing NoCs is a way to realize gate- and cir-

cuit-level models, starting from an architectural tem-

plate and design constraints. Because of their novelty,

NoCs have no specialized languages or formalisms for

their high-level modeling. Nevertheless, structural for-

malisms can help designers model network topologies,

and procedural languages such as SystemC and C++ can

capture hardware and software behavior.

Synthesis is useful in both homogeneous and hetero-

geneous network architectures, but it is critical in the lat-

ter because designers must choose from, and experiment

with, different topologies and parameters when search-

ing for the best match for an application. The premise of

network synthesis is that designers can realize the net-

work by means of components such as switches, links,

and network interfaces. Such components are tailored to

the network and instantiated, resulting in a model that

can be simulated and synthesized. There are several rea-

sons for using a synthesis methodology for NoCs:

■ Sometimes the best network architecture, protocols,

and parameters for a given system application aren’t

known. To find the best solution, a designer must

experiment with different models having various per-

formance, energy consumption, and layout complex-

ity trade-offs. Eventually, it will be possible to choose

the network topology, protocols, and parameters auto-

matically or with CAD tool support. In the interim, fast,

automatic generation of models that the network can

simulate can help designers make informed choices.

■ There are many parameters to optimize in an on-chip

network implementation. CAD tools can help opti-

mize the implemented circuitry by, for example, siz-

ing switches and links to provide adequate QoS with

minimal area overhead and energy dissipation. (See

the “Quality of services” sidebar.) Fine-tuning NoCs is

hard and time-consuming, especially in the case of

heterogeneous fabrics and networks.

■ A synthesis flow allows fast design and lets designers

concentrate on system issues while leaving details

to the tools. When coping with the challenges of

communication-centric SoCs, designers must use

network synthesis to close the productivity gap in

Networks on Chips

408 IEEE Design & Test of Computers

much the same way that logic synthe-

sis has expedited semicustom design.

Examples of NoC libraries include

xPipes4 and xPipesLite;14 the latter is a sim-

pler, faster, and synthesizable version of

the former. The xPipes compiler (shown

in Figure 3) is a network synthesis tool for

xPipes, and Sunmap9 (shown in Figure 4)

is an automatic topology selection tool.

Designers have used the libraries and

tools to realize experimental gate-level

models of complex system applications.

Both xPipes and xPipesLite rely on

three major component types:

■ Network interfaces that act as wrappers

for generic processor cores that must

comply with the open core protocol (OCP)

(http://www.ocpip.org). Acting as a protocol convert-

er, these interfaces convert the core’s I/O signals from

OCP to an internal wormhole static-routed protocol.

(See the “Network interfacing” sidebar on p. 411.)

■ Switches that are parameterizable in terms of inputs,

outputs, virtual channels, and error control schemes.

■ Latency-insensitive links, which use wire pipelining

to satisfy frequency constraints, also use optional tim-

ing-error control features. Bertozzi et al. provide

details.9

Testing NoC-based systems
The test strategy for NoC-based systems addresses

three problems: testing the functional and storage

blocks and their corresponding network interfaces, test-

ing the interconnect infrastructure itself, and testing the

integrated system.

409September–October 2005

Quality of services encompasses a collection of design
requirements that must be fulfilled to achieve a certain per-
formance level. Because the interconnect infrastructure pro-
vides data communication services to the constituent IP
blocks, the infrastructure’s design must let it maintain pre-
dictable performance under various operating conditions.
In NoCs, two types of services are essential: data integrity
(meaning the data is delivered without corruption) and
throughput and latency services (characterized by time-
related bounds). Designers achieve these services through

■ contention-free routing schemes,
■ error control coding,
■ deadlock avoidance mechanisms, and
■ appropriate flow-control strategies.

Guaranteed services require resource reservation for
worst-case scenarios. As a result, resources often remain
underused. Best-effort services do not reserve resources

and hence provide no service guarantee. Guaranteed ser-
vices should be used for critical traffic, and best-effort ser-
vices for noncritical traffic. By integrating both guaranteed
and best-effort services in the same interconnect, it’s pos-
sible to design predictable, low-cost interconnect infra-
structures.1 In the Æthereal NoC,1 the network interface
offers a guaranteed service by providing a lower bound on
throughput and an upper bound on latency, because these
are the most critical components for supporting real-time
communication. Æthereal implements throughput and laten-
cy guarantees by configuring connections as pipelined
time-division-multiplexed circuits over the network.

Reference
1. A. Rădulescu et al., “An Efficient On-Chip NI Offering

Guaranteed Services, Shared-Memory Abstraction, and

Flexible Network Configuration,” IEEE Trans. Computer-

Aided Design of Integrated Circuits and Systems, vol. 24,

no. 1, Jan. 2005, pp. 4-17.

Network
interface

files

Switch
files

Routing
tables

Core
models

SystemC
output

Simulation
and synthesis

Link
files

xPipes library

xPipes compiler

Application

Application-
specific

NoC

Figure 3. NoC synthesis flow.

Quality of services

Functional and storage block testing
Testing the functional and storage blocks and their

corresponding network interfaces requires a test access

mechanism (TAM) to transport the test data. This TAM

provides on-chip transport of test stimuli from a test pat-

tern source to the core under test. It also transmits test

responses from the core under test to the test pattern sink.

Cota et al. propose reusing the on-chip network as a TAM

for the functional and storage cores.12 The principal

advantage of using NoCs as TAMs is the availability of sev-

eral parallel paths for transmitting test data to each core

and the fact that no extra TAM hardware is needed. The

result is a reduction in system test time through extensive

test parallelization; that is, more functional blocks can be

tested in parallel because more test paths are available.

One side effect of test parallelization is excessive power

dissipation. Hence, both test time and power dissipation

require consideration when exploiting parallelization for

testing the functional blocks.12

Interconnect infrastructure testing
Testing the interconnect infrastructure involves two

aspects: testing the switch blocks and testing the inter-

switch wire segments.

Testing switch blocks. The switch blocks consist of the

FIFO buffers and the routing logic. FIFO buffers occupy

more silicon area than routing logic, so switch block test-

ing breaks down into two problems: testing the FIFO

buffers and testing the routing circuitry. Generally, rout-

ing logic consists of a few hundred logic

gates, and engineers use traditional testing

methods such as scan or BIST. However,

testing the FIFO buffers poses a unique

challenge because many relatively small

buffers are distributed all over the chip.

BIST, a traditionally accepted methodolo-

gy for testing FIFO buffers, is not suitable

in the NoC scenario. The classical BIST

approach of one dedicated BIST per FIFO

block would result in an unacceptably

large silicon area overhead. Consequently,

a distributed BIST methodology, like that

depicted in Figure 5, is more appropriate.

A distributed BIST scheme shares the

read/write mechanisms, the control cir-

cuitry, and the test data source among

the multiple FIFO blocks, whereas each

FIFO has a local response analyzer.

Researchers must investigate realistic

fault models for these FIFO buffers.

Testing interswitch wire segments. This aspect

involves the adoption of adequate fault models that

account for deep-submicron effects. In the digital

domain, device defects used to be modeled with

extremely simplified models such as the stuck-at fault

model. In deep-submicron technologies, crosstalk and

inductive effects introduce more-complex behaviors that

require more-advanced fault models for interconnect test-

ing. Test engineers can apply the maximal aggressor fault

(MAF) model proposed by Cuviello et al. to test the inter-

switch wire segments in NoC architectures.15 For a link

consisting of N wires, this MAF model assumes the worst-

case situation with one victim line and N – 1 aggressors.

MAF tests must execute at operational speed, which can

require expensive external testers. To achieve high-qual-

ity at-speed testing of interconnects, researchers have pro-

posed different self-test methods that use embedded BIST

structures to generate MAF tests. However, these meth-

ods introduce area and delay overhead. Testing of inter-

switch wire segments in NoCs remains an open problem

requiring further investigation.

Integrated system testing
Testing the functional and storage blocks and the

interconnect infrastructure separately isn’t enough to

ensure adequate test quality. Interaction between the

functional and storage cores and the communication

fabric must also undergo extensive functional testing,

Networks on Chips

410 IEEE Design & Test of Computers

Figure 4. Sunmap design flow.

Area
library

Power
library

Hardware/software
codesign and simulation

Mapping onto
topologies

Topology
selection

Application

Floor
plan

Routing
function

Custom
topology

Topology
library

Topology mapping phase

Selection
phase

which should encompass testing the I/O functions of

each processing element and the data routing functions.

Reliable SoC/NoC design
SoCs often reside within embedded systems, where

reliability is an important figure of merit. At the same

time, in deep-submicron technologies beyond the 65-

nm node, failures of transistors and wires are proba-

bly caused by a variety of effects, such as soft

(cosmic) errors, crosstalk, process variations, elec-

tromigration, and material aging.1 We can generally

distinguish between transient and permanent failures.

Design of reliable SoCs must encompass techniques

that address both types of malfunction. We address

transient malfunctions first; then we analyze perma-

nent malfunctions.

411September–October 2005

The NoC design paradigm’s success relies heavily on
the standardization of the interfaces between IP cores and
the interconnection fabric. Using a standard interface
should not affect the methodologies for IP core develop-
ment. In fact, IP cores wrapped with a standard interface
will be far more reusable and will greatly simplify the task of
system integration.1 The open core protocol (OCP;
http://www.ocpip.org) is a plug-and-play interface stan-
dard gaining wide industrial and academic acceptance.
Similar to the OCP, the AMBA AXI (http://www.arm.com) is
another protocol targeting the design of high-performance
systems. As Figure B shows, for a core having both master
and slave interfaces, a second interface packetizes the
OCP- or AXI-compliant signals of the functional IP blocks.
The network interface has two functions:

■ injecting or absorbing the flits leaving or arriving at the
functional and storage blocks, and

■ packetizing and depacketizing the signals to and from
the OCP- or AXI-compatible cores in the form of mes-
sages or flits.

All OCP signals are unidirectional and synchronous,
simplifying core implementation, integration, and timing
analysis. The OCP defines a point-to-point interface
between two communicating entities, such as the IP core
and the communication medium. One entity acts as the
master of the OCP instance, and the other as the slave.
The OCP unifies all intercore communications, including
data flow, sideband control, and test-specific signals.

The burst-based AXI protocol provides a single inter-
face definition between a master and the interconnect, a
slave and the interconnect, and a master and a slave.
Every transaction has address and control information on
the address channel describing the nature of the data to
be transferred. The data travels between master and slave
using a write data channel to the slave or a read data
channel to the master.

Reference
1. L. Benini and D. Bertozzi, “Xpipes: A Network-on-Chip

Architecture for Gigascale Systems-on-Chip,” IEEE

Circuits and Systems Magazine, vol. 4, no. 2, Apr.-June,

2004, pp. 18-31.

Network interfacing

Core Network
fabric

O
C

P
/A

X
I

sl
av

e

P
ac

k P
ac

ke
tsU
np

ac
k

O
C

P
/A

X
I

si
gn

al
s

O
C

P
/A

X
I

m
as

te
r

OCP/AXI
interface

Network
interface

Figure B. Interfacing IP cores with the network

fabric.

FIFO
Local

response
analyzer

FIFO
Local

response
analyzer

FIFO
Local

response
analyzer

FIFO
Local

response
analyzer

Multiple-input shift register

B
IS

T
 c

on
tr

ol
le

r

D
at

a
ge

ne
ra

to
r

C
on

tr
ol

ge
ne

ra
to

r

Figure 5. Distributed BIST structure for FIFO testing.

Error control coding
From a reliability viewpoint, one advantage of pack-

etized communication is the possibility of incorporating

error-control information into the transmitted data

stream. Applying effective error detection and correc-

tion methods from the communications engineering

domain can help in coping with transient malfunctions

in on-chip data transmission. Such methods require eval-

uation and optimization in terms of area, delay, and

power consumption trade-offs. Researchers have stud-

ied and proposed different error detecting and correct-

ing codes for bus-based on-chip communication fabrics.

They have shown that for a bus-based system, from the

energy efficiency perspective, error detecting codes with

retransmission are more effective than error correction.

In NoC architectures, the error recovery mechanism

can be distributed over multiple hops or concentrated

at the end nodes. In distributed schemes, each switch

has error detection or correction circuitry such that

transmission of corrupted data can be stopped or cor-

rected at the intermediate switches. In centralized

mechanisms, the retransmission of corrupted data can

cause a severe latency penalty, especially when the

source and destination nodes are far apart. Therefore,

the trade-off related to the localization of error detec-

tion and correction involves several figures of merit,

such as latency, area, and power consumption.

Fault-tolerant architectures
Permanent failures may be due to material aging

(oxide), electromigration, or mechanical or thermal stress.

Failures can incapacitate a processing or storage core or

a communication link. Researchers have proposed vari-

ous fault-tolerant multiprocessor architectures and routing

algorithms in the parallel processing domain. Designers

can adapt some of these solutions to the NoC domain, but

they should evaluate their effectiveness in terms of through-

put, delay, energy dissipation, and silicon area overhead

metrics. For example, redundant standby components can

serve as spare parts. On-chip networks ease the seamless

integration of such components, as well as the online tran-

sition from a malfunctioning unit to a spare part. Specific

on-chip network topologies can provide the SoC with mul-

tiple paths from source to destination, and this redundan-

cy might suffice to obviate a malfunctioning link, possibly

at the expense of performance.

In the realm of NoCs, designers must weigh all types

of redundancies against additional layout complexity

(larger chips) and increased energy consumption.

Therefore, it’s important to view reliable system design

in conjunction with power management. Indeed,

because of frequency, temperature levels, and thermal

cycles, power management policies affect failure rates.

Similarly, designers can use power management tech-

niques to switch spare units on or off, thereby limiting

their energy consumption impact. This area is a subject

of ongoing research.

COMMERCIAL DESIGNS are integrating from 10 to 100

embedded functional and storage blocks in a single SoC,

and the number is likely to increase significantly in the

near future. Because of this enormous degree of integra-

tion, several industrial and academic research groups are

striving to develop efficient communication architectures,

in some cases specifically optimized for certain applica-

tions. The research community tends to view NoCs as an

enabling solution for this level of integration. Major issues

still under debate include the detailed design trade-offs

and the performance optimizations accompanying this

new on-chip interconnect paradigm. ■

References
1. L. Benini and G. De Micheli, “Networks on Chips: A New

SoC Paradigm,” Computer, vol. 35, no. 1, Jan. 2002, pp.

7078.

2. P. Magarshack and P.G. Paulin, “System-on-Chip

beyond the Nanometer Wall,” Proc. 40th Design Automa-

tion Conf. (DAC 03), ACM Press, 2003, pp. 419-424.

3. P.P. Pande et al., “Performance Evaluation and Design

Trade-offs for Network-on-Chip Interconnect

Architectures,” IEEE Trans. Computers, vol. 54, no. 8,

Aug. 2005, pp. 1025-1040.

4. L. Benini and D. Bertozzi, “Xpipes: A Network-on-Chip

Architecture for Gigascale Systems-on-Chip,” IEEE Cir-

cuits and Systems Magazine, vol. 4, no. 2, Apr.-June,

2004, pp. 18-31.

5. S. Kumar, “On Packet Switched Networks for On-Chip

Communications,” Networks on Chip, A. Jantsch and H.

Tenhunen, eds., Kluwer, 2003, pp. 85-106.

6. C. Grecu et al., “Timing Analysis of Network on Chip

Architectures for MP-SoC Platforms,” Microelectronics

J., vol. 36, no. 9, pp. 833-845.

7. F. Karim et al., “An Interconnect Architecture for

Networking Systems on Chips,” IEEE Micro, vol. 22, no.

5, Sept.-Oct. 2002, pp. 36-45.

8. M. Coppola et al., “OCCN: A Network-on-Chip Modeling

and Simulation Framework,” Proc. Design, Automation

and Test in Europe (DATE 04), IEEE CS Press, 2004,

pp. 174-179.

Networks on Chips

412 IEEE Design & Test of Computers

413September–October 2005

9. D. Bertozzi et al., “NoC Synthesis Flow for Customized

Domain-Specific Multiprocessor System on Chip,” IEEE

Trans. Parallel and Distributed Systems, vol. 16, no. 2,

Feb. 2005, pp. 113-129.

10. W.D. Weber et al., “A Quality-of-Service Mechanism for

Interconnection Networks in System-on-Chips,” Proc.

Design, Automation and Test in Europe (DATE 05),

IEEE CS Press, 2005, pp. 1232-1237.

11. A. Rădulescu et al., “An Efficient On-Chip NI Offering

Guaranteed Services, Shared-Memory Abstraction, and

Flexible Network Configuration,” IEEE Trans. Computer-

Aided Design of Integrated Circuits and Systems, vol.

24, no. 1, Jan. 2005, pp. 4-17.

12. E. Cota et al., “Power-Aware NoC Reuse on the Testing

of Core-Based Systems,” Proc. Int’l Test Conf. (ITC 03),

vol. 1, IEEE CS Press, 2003, pp. 612-621.

13. T. Ye, L. Benini, and G. De Micheli, “Packetization and

Routing Analysis of On-Chip Multiprocessor Networks,”

J. System Integration, vol. 50, Feb. 2004, pp. 81-104.

14. S. Stergiou et al., “xPipesLite: A Synthesis-Oriented

Design Library for Networks on Chips,” Proc. Design,

Automation and Test in Europe (DATE 05), IEEE CS

Press, 2005, pp. 1188-1193.

15. M. Cuviello et al., “Fault Modeling and Simulation for

Crosstalk in System-on-Chip Interconnects,” Proc. Int’l

Conf. CAD (ICCAD 99), IEEE CS Press, 1999, pp. 297-

303.

Partha Pratim Pande is an assis-
tant professor in the School of Electrical
Engineering and Computer Science at
Washington State University. He was a
graduate student at the University of

British Columbia when he did this work. His research
interests focus on design and test of NoCs. Pande has
a BS in electronics and communication engineering from
Calcutta University, an MS in computer science from the
National University of Singapore, and a PhD in electrical
and computer engineering from the University of British
Columbia. He is a student member of the IEEE.

Cristian Grecu is a PhD student in
the Department of Electrical and Com-
puter Engineering at the University of
British Columbia. His research interests
focus on design and test of large SoCs,

with emphasis on their data communication infrastruc-
tures. Grecu has a BS and an MS from the Technical
University of Iasi, Romania, and an MS from the Univer-
sity of British Columbia, all in electrical engineering.

The biography of André Ivanov appears on p. 403
of this issue.

Resve Saleh is a professor in the
Department of Electrical and Comput-
er Engineering at the University of
British Columbia, where he holds the
NSERC/PMC-Sierra Chair. His research

interests include SoC design, verification, and test. Saleh
has a BS in electrical engineering from Carleton Univer-
sity, Ottawa, and an MS and PhD in electrical engineer-
ing from the University of California, Berkeley. He is a
senior member of the IEEE.

The biography of Giovanni De Micheli appears on
p. 403 of this issue.

Direct questions and comments about this article
to Partha Pratim Pande, School of EECS, Washington
State University, Pullman, WA 99164-2752; pande@
eecs.wsu.edu.

For further information on this or any other computing

topic, visit our Digital Library at http://www.computer.org/

publications/dlib.

computer.org/join/
grades.htm

GIVE YOUR CAREER A BOOST
UPGRADE YOUR MEMBERSHIP

Advancing in the
IEEE Computer
Society can elevate
your standing in the
profession.

REACH
HIGHER

